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LINEAR TRANSFORMATIONS, PROJECTION OPERATORS AND ,

GENERALIZED INVERSES-A GEOMETRIC APPROACH

ABSTRACT -

A generalized inverse of a linear transformation A: v ---w, where v and

w are finite dimensional vector spaces, is defined using geometric concepts of

linear transformations and projection operators. The inverse is uniquely ji,'

defined in terms of specified subspaces m C v, I C w and a linear ,

transformation N such that AN = 0, NA = 0. Such an inverse which is unique is

called the ImN-inverse. A Moore-Penrose type inverse is obtained by putting

N=O. Applications to optimization problems when v and w are inner product

spaces, such as least squares in a general setting, are discussed. The results

given in the paper can be extended without any major modification of proofs

to bounded linear operators with closed range on Hilbert spaces.
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1. INTRODUCTION

Let v and w be two finite dimensional vector spaces and A:v - w be a

linear transformation from v to w . We denote the range of A by

R(A) = {y: Ax=y,x v}=aCw (1.1)

and the nullity or kernel of A by

K(A)= (x -v:Ax=O=kCv. (1.2)

If c and d are subspaces of v such that

c n d = 0, the null vector (1.3)

c (d = {xl+X 2:XIEC,x 2 Ed) =v (1.4)

then c and d are said to be direct complements. Given any subspace c C v,

there exists a subspace d C v , called the direct complement of c, which

satisfies the conditions (1.3) and (1.4). The choice of d is not unique. Given

any pair c, d satisfying (1.3) and (1.4), any vector x E v has the unique

decomposition
'

x x 1 + x2, X1 6 C, x2 Ed. (1.5)

The transformation x -- x1 , which is linear, is called the projection operator on

c along d and is represented by

Pc.d v v. (1.6)

It is seen that

PCA + P d.c = I Pc.a P d.c =0 (1.7)

" " ', ,' ie -" '.€' i ',tr ,€" , , t ,r ,. 9 - 9: 'S, ., .S , '% .*, %.~ ,.~ . •.,** ,.,% % 8 . .. . ....
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R(P c, R(P ) d (1.8)
c~d d.cd(18

where I and 0 are identity and null transformations on v.

A: v -) w is called bijective if it is onto and one-to-one. In such a case,

there is an inverse of transformation A, denoted by A- 1 , which is linear and

is such that

AA "1 = I(on w), A'IA = I(on v). (1.9)

The restriction of A: v -- w to a subspace c C v is also a linear

transformation and is denoted by

AIc: c -* w. (1.10)

Let k be the nullity of A as defined in (1.2), m be any direct complement of k,

(i.e. kern = v), and a be the range of A. Then

Aim : m - a is a bijection. (1.11) .

This is easily seen as follows. Choose y E a and let x E v be a preimage of y, i.e.,

x is such that Ax = y. Then

P x E m and Ax = A(P m  + P x) = AP x=y
M m.k k.m mk

so that the mapping (1.11) is onto. Further if x1 E m and x2 E m, then x1 - x E

m. If now Ax 1 = Ax 2 , then A(x-x 2) =0 =2 xI - x2 E k which is a contradiction

unless x1 = x2. Thus x1 #x 2 =i AxI Ax 2, which shows that the mapping (1.11) is

one to one.

The result (1.11) implies the existence of an inverse ..

(Aim) =T :a -m (1.12) " -m "J

such that

T Alm =I(on m), AT A= A, T A=P (1.13)

AT Ia=I(ona), T AT =T . (1.14)Am m m m" .



Note that T is defined only on a C w and not the whole of w.m

In this paper, we develop the concept of a generalized inverse (g-

inverse) of A when it is not necessarily bijective and provide some

characterizations and applications. This is accomplished by extending Tm as a

linear transformation on any complement of a in w.

.'4

-'
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2. G-INVERSE OF A LINEAR TRANSFORMATION

Let A: v -4 w be a linear transformation with range a C w and nullity

k C v. Consider a consistent linear equation Ax = y (E a ) and denote the set of

solutions by

S =x Ev:Ax=y}. (2.1)

Suppose that there exists a linear transformation G: w - v such that

GyE S for anyy E a (2.2)
y

i.e., Gy is a solution of Ax - y for any y E a . Then substituting Gy for x in Ax = y

AGy=y Vy Ea or AGla =I(ona) = AGA=A. (2.3)

Conversely, if there exists a G such that (2.3) holds and Ax = y is a consistent

equation, i.e., there exists an x such that Ax = y, then

AGA = A = AGAx = Ax or AGy =y (2.4)

so that Gy is a solution of Ax = y. Any G satisfying the condition (2.3) is called a

g-inverse of A; this enables us to solve a consistent equation Ax = y. Such a G

which may not be unique is denoted by A- and the set of all G satisfying (2.3) is
denoted by (A-). The following lemmas characterize g-inverses.

Lemma 2.1 Let k be the nullity of A, a the range of A, and G be a linear
transformation such that AGA = A, i.e., G E (A-). Then the following hold:

(i) m = R(GA) is a direct complement of k, and T :a - m =Gla orm
GAim = I(on m), where T = (Aimm

(ii) IfN=G-GAG, then AN=OandNA=O.

(iii) I = R(I-AG) is a direct complement of a, and Nil = Gll.

% %
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Proof ofi. Let x E m n k Then x= GAu for some u and Ax =AGAu=

Au-O x=O,i.e.,m nk=O. Also,ifx vthen

x =GAx + (I-GA)x =x 1 + x2

1 2

where x E m and x2 E k since Ax = 0. Thus the conditions (1.3) and (1.4) are .12
satisfied so that m is a direct complement of k Then there exists T asm -

defined in (1.12) - (1.14), and in particular T Aim = I. Now
m

T Ax=T AGAx=T A(GAx)=GAxm m m I

since GAx E m, which implies T =Gla or GAIm =1. im
A' .

Proof of (ii . Obvious.

Proof fliu.). Let y El a . Then, for some x and u

y =Ax =(I-AG)u~ AGAx AG(I-AG)u 0=0 Ax 0

so that I l a = 0. Further

'1*

y = AGy + (I-AG)y = y = Y1 + Y2

where yI E a and Y2 E I Thus the conditions (1.3) and (1.4) are satisfied so

that I is a direct complement of a. Consider

N(I-AG)u - Nu = (G-GAG)u = G(I-AG)u p-..

for any u, so that Nil = GIl . Lemma I is proved.

Definition. Let m be any direct complement of k (the nullity of A) and

I be any direct complement of a (the range of A) and N:w - v be any linear

transformation such that AN = 0 and NA = 0. Then G is said to be an IroN-

inverse of A if

(i) G is linear, (ii) GAIm = I and (iii) Gil = Nil. (2,5)

.. ... .. .. ~~xe ,M-r,. , - A . ;
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Such a G, if it exists, is denoted by GlN Lemma 2.2 characterizes such

inverses. S

Lemma 2.2.

G =T P + N (2.6)
ImN m a.1

where T is as defined in (1.12) with respect to a chosen m, so that GlN is
m m

unique for any given 1 , m and N.

Proof. Let y- y + y2 4 Y a andY 2 E l. Then

GImN Y GImN I'l + GImN Y2

T y + Ny, using (2.5)
m 1 + 2 2ll

=T P y+Nym Pa,l

m(TMPa.1 +N)y Vy Ew.

which establishes Lemma 2.

Lemma2.3. GjmN E {A-) and the mapping

(l, m ,N) - {A-I is bijective. (2.7)

Proof. Using the representation (2.6)

AG A= A(T P + N)AlmN m a.!I

=ATM P.1 A =AT m A =A, using (1. 13)
.- ,

I
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so that GiN E (A-.

Again the representation (2.6) shcws that GlmN is unique for given l

m, N. On the other hand, it is shown in Lemma 2.1 that given a G E {A-) , there

exists an I , m , N for which it is the lmN -inverse, and the result (2.7) is

t.stablished.

Incidentially, the existence of a g-inverse G satisfying the condition

AGA = A is established through the representation (2.6).

The anatomy of a g-inverse is exhibited in the following diagram.

A: v ->w

Tm .a-> M

*6.

'aa

N

L em ma 2.4 . Let k, m, a, I and N be as given in the definition above the

equation (2.5). Then the following statements on a linear transformation G are
equivalent.

(i) GAIm = I, Gil = Nil (as defined in (2.5)).
(ii) GA=P .k' GPI.a = N.

(iii) GA = P AG = P P G = N.
m.k' a.I1 PkG=N

(iv) GA=P AG=P G-GAG=N.
M. " a.1' G A .
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(v) AGA=A, R(Gla)=m GPIa =N.
-,

(vi) AGA=A, R(GIA)=m, R(GIOCk, G-GAG=N. p

Proof. (i) * (ii).

GAx = x if x E m, using the condition GAIm = I,

GAx = 0 if x E k, using the condition Ax = 0

which shows that GA =P Further

Gil = Nit GPa= NPla = NPla + NP =N.

GP .a =N= AGP.a =0, and A =APm.k = AGA

which together imply AG = Pa.I' Further
N = GP = G(I-P ) = G(I-AG)

L~a a.!I

=(I-GA)G= (I-P )G P G.
M. k -k.m

(iii) = (iv), since p.,

Pk.m I - GA and Pk.mG=G-GAG.

(iv) = (v), since a.

GA = Pk AGA = APk A,

GA=Pk R (GA) =R(P m

and

GPL a =G-GPa =G-GAG=N.

(v) * (vi), since

%a



GP N = AGP =AN=O= R(GP )Ck.La L.a L~a

S

Further

(G-GAG)P/. a  N, (G-GAG)P a./  G - GAG N. ws'i

Finally we show that (vi) * (i). Let xE m. Then

R(Gla)= m G E m.

Now let x1 + s=GAx . Thens EM ,and

Ax +As=A(x1 +s)=AGAx l =Ax l =As =0sEk

using the condition AGA = A. Since m and k have only the null vector as

intersection, s = 0 which shows that GAx= x1 or GAIm = I. Further noting that

R(GII) CA k AGP/ 0 S

we have

N =G - GAG F

NPa = GPIa - GAGP.a = GPI Nil GIl.

Lemma 2.4 is established.

When N = 0, the statement (iv) of Lemma 2.4 reduces to the definition of

a g-inverse given by Nashed and Votruba (1976), so that their g-inverse is

G which is discussed in the next section.
LmO
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3. REFELXIVE G-INVERSE

Definition. G is said to be a reflexive (or an outer inverse) of A if

AGA = A and G = GAG. (3.1)

The class of G satisfying (3.1) is represented by {A;) and any member of it by

A-

The following lemma characterizes reflexive g-inverses
Lemma 3A

{G/toO} = {A C (A-) (3.2)

i.e., all reflexive g-inverses are generated by choosing N = 0, and {l, m} as the %

set of all direct complements of a and k respectively.

Proof. From the representation (2.6)

G m T P
GMO = Tm a.1

Then

A Tm Pa.1 A A Tm A =A, using (1.13)

T P AT P =T AT P =T P using (1.14)
m a- I M l m ad .- m a1 uig(.4

which shows that GlP 0 E {A;)

Conversely let AGA = A and G = GAG. Choose m = R(GA) and I = R(I-AG).

Then as in (i) of Lemma 2.1
Gla = T .-m"

-

Further, if y E , then y = (I-AG)u for some u so that

'V
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Gy = G(I-AG)u = 0, since G = GAG

GIl =0.

Thus G satisfies the definition of Glm0 and Lemma 3.1 is proved.

Lemma3.

GlmN - Gin 0 + N (3.3)

Proof. The result (3.3) follows from the representation (2.6).

Lemma3. . The following statements are equivalent.

(i) G is the lmO-inverse
(ii) GA = P GIl = 0

in k,
(iii) GA = Pr.k" AG = Pa.l" G = GAG.

(iv) GA = P R(G) = m, AG = P

(v) AGA= Ag =R(G)=m,R(Gl)=O

The results are proved on the same lines as in Lemma 2.4.

If v and w are inner product spaces and if we choose m as the

orthogonal complement of k , and 1 as that of a , then the condition (iv) of

Lemma 3.3 can be written as

G,,= I - Pk =Pg AG =Pa (3.4)

where g = R(G), Pk is the orthogonal projector on k and P is the orthogonalk- a

projector on a, which is equivalent to the definition given by Moore (1920)

and Penrose (1955).
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4. L M -INVERSE

If in the definition of the Im N -inverse, we do not specify N but only

require that GI/ C k , then we can write the conditions for a g-inverse in the

form

GAIm =1, AG11 =0. (4.1)

We represent the solution of (4.1) by Gim, which may not be unique and call it

an Im-inverse. I

Lemma 4.L. The following statements are equivalent for given I and m

any direct complements of a and k respectively.

(i) G is an Im-inverse.
(ii) GA= P AG= PM. k a.
(iii) AGA=A, R(Gla)=m, R(GII)C k.

The proof of Lemma 4.1 follows on the same lines as that of Lemma 2.4.

The definition given in (ii) of Lemma 4.1 was proposed by Langehop

(1967).

. -

,,'x
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5. OTHER INVERSES

5.1 M-inverse

An m-inverse is defined by specifying m only as in the following

lemma.

Lemma5. 5. The following conditions are equivalent for an m-inverse.

(i) GAIm = I.
(ii) GA = P

m. k

(iii) AGA = A, R(Gla) =m.

We represent an m -inverse of A, which may not be unique, by Am to be

consistent with the notation developed earlier by the author (Rao, 1967).

If v is a vector space endowed with an inner product, then we may

choose m to be an orthogonal complement of k . In such a case, if Ax = y is a

consistent equation, then

min Ilxil = IIAIyll (5.1)
Ax=y

so that Amy is the minimum norm solution of Ax = y. Note that any particular

solution of Ax = y is given by A'y where A- is any g-inverse satisfying the "

condition A A- A = A.

To prove 5.1, we observe that if x is any solution of Ax = y, then

A(x-Amy) = 0 =* x - Amy E k

and by definition AM y E m , and since m and k are orthogonal complements

jjxj12 = IIx-Amy + Am y1 2 = IIx-AmyI 2 + IAtyII 2 , by Pythogorous theorem

> IIA j yII2 .

-
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5.2 I-inverse

An 1-inverse of A, denoted by A 1 is a linear transformation G as

characterized in Lemma 5.2.

Lemma 5.2. The following conditions are equivalent for an l-inverse.
.

(i) AG = Pl":
a. Iw

(ii) AGA = A, R(Gl) C k .

If w is an inner product space, we may choose I to be the orthogonal

complement of a . In such a case I.

minlly - Axl- Ifly - A A yll (5.2)
x

so that Aly is a general least squares solution of a possibly inconsistent

equation. Observe that

y - A A-y =(I-Pa )y = Pl.a y E l

A A-y=Pal y a = A A-y-Ax Ea
I a1

so that by virtue of orthogonality of I and a

lly-Axl 2 = Ily - A A- y + A A-y - AxlI2

Ily - A A-yiI2 + 11A A/y - Axl 2 > 1ly- A 2 y

5.3 ImO-inverse 
•

The ImO-Inverse, specified by 1, m and N = 0 and deluoLeu by Aim O , is

already characterized in Lemma 5.3. When v and w are inner product spaces,
we may choose m to be the orthogonal complement of k, and 1 to be the

orthogonal complement of a. In such a case the lmO-inverse can be

characterized by

4 'r
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GA-(1-Pk ) = P g9 AG=Pa (5.3)

where Px denotes the orthogonal projection operator on x. The inverse

satisfying the conditions (5.3) is the Moore-Penrose inverse and is

represented by A+. We show that

min {lxl II : Ily - Ax I II = min Ily - AxIll = IIA+yIJ (5.4)
x x

where the norms associated with x E v and y E w may be different, so that A+y

is the minimum norm least squares solution of Ax = y (possibly inconsistent

equation).

Observe that

Ily - AxI 2 = IPa y - Ax112 + liP/ y 112 (5.5)

where the second member does not involve x, and the minimum of Ily-AxIl is

attained if Ax = Pa y so that xI is a solution of Ax = Pa y which is a consistent

equation. The problem (5.4) demands the solution of Ax = P y with the
a

I..

minimum norm, which is supplied by the equation (5.1)

Ax= A mPAy = Gy.

Now

GA=AmP A=ArA=P (IP
m a Inm mk k

AG =AA- P =P , sinceR(P )=a
m a a a

so that G satisfies the conditions (5.3) and hence it is the ImO-inverse.

Thus the 1 and /mO-inverses provide solutions to the least squares

problem in the most general setting. When v and w are Euclidian spaces of m

and n dimensions respectively, the linear transformation A can be

d' I
' . i . . . r . . . . . . .. -,%." " M . ( - '. . . . .- i " .€- - " . -" P ." ," , t " < ." 1' , .a ." ." ." P t" 4 "
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represented as an nxm matrix in which case explicit representations can be

obtained for various generalized inverses as shown in Rao (1955, 1962, 1967,

1973) and Rao and Mitra (1971). The geometric approach in the case of a -'

general linear transformation was developed in Rao and Yanoi (1985). All the W,

results of this paper can be extended without any major modification of the

proofs to bounded linear operations with closed range on Hibert spaces. 'p

he
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